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Abstract

In the paper we present several mathematical models of dehydrogenation kinetics of metals for the TDS (thermal desorption spectrometry
method. Diffusion is assumed to be fast. This allows considering only ordinary differential equations.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction cg(t). For some materials one can also assumedgi@) =
c§™ = const. Otherwisep(r) > c§™. Herec§™ is the criti-

In this paper we discuss some models applied to the cal concentration in hydride. We model the desorption flux
widely used experimental method of thermal desorption density with a square dependence on the concentration:
spectrometry (TDS)J1-6] applied to dehydrogenation of  j(r) = b(T)ch(t, L) (bulk desorption). The boundary-value
metals. A sample of studied material (e.g. hydride) is placed problems of dehydrogenation of metals with surface des-
into an evacuated vessel and heated. The desorption flux oforption are considered if7,8]. We assume also that all pa-
hydrogen from the sample is measured. We are interestedrameters are Arrhenius temperature dependent, in particular
in kinetics of dehydrogenation of metals. We assume that p(r) = b(T(¢)) = bg exp{—E/[RT(1)]}.
temperature is rather high so that diffusion is relatively fast.

Thenitis possible to make models using ordinary differential

equations. 2. Constant concentration in hydride
The material is a powder. We consider a single particle ) ot
and model it as a sphere of radiisReal particles of hydride Here we consider the case wheyfr) = ¢g™. The concen-

powders are not spherical; yet the sphere is a good approx-tration dynamics is driven by two qu>.<(_as: the desgrpt_ion flux
imation for small particles when diffusion is fast. Inside the @nd the flux of hydrogen decomposition. To avoid singular-

particle there is a hydride corp phase) of radiug. Aspher- ity in the obtained differential equationszt 0 we should
ical layer of widthL — p is metal with dissolved hydrogen ~ considerathininitial cover” alayer of metal with dissolved
(a phase). Usually the heating is linedi(r) = vt + To. hydrogen around the hydride core. léfr) and S(r) be the

Letca (1, r), cp(t, r) be the concentrations of hydrogen dis- volume and area of a sphere of radiushe balance equation
solved ina andp phases at time r is for radius. Since dif-  for decomposing hydride is
fusion is fast, we can assume tleatz, r) = co (1), cp(t, r) =

t
cgV(o() + ca()(V(L) — V(p(1) + S(L) / b(r)ci(v) de
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Differentiating ons we obtain
13 _ 53
P LR =0

(g™ — ca())®p + calt) @)

Now let us consider the hydrogen balance near the phase

bound. Denote the density of hydrogen flux from the hy-
dride phase byi(t, c4(t)). During the time d the hydride

core was decreasing. Denote the decrement of its radius

by do < 0. At time ¢ the thin spherical layer of widthdp|
(denote its volume by d> 0) consisted of hydride and
contained hydrogen with concentratiogi't. At time 7 + dr

this layer contained dissolved hydrogen with concentration
co(t). The amountc(grlt — co(1)) dV is gone towards the sur-
face by the flux/ because there are no other sinks. Since
dV = 4np?|dp| = —4np? dp, it follows that

~4mp*(cf" — ca0))p = dnp?1(1. calr))
B = cal®p = ~1(t, calt)) (3)

= (CB

The last equation is a Stefan condition at the moving
bound. The initial data i®(0) = pg < L. Substituting(3)
in (2), we get:

ca()(L3 = p3(0)) = 3I(t, co (1)) p?(r) — BL2b(1)c2 (1),

ca(0)=c 4

Here ¢ is some initial value for the concentration. It is
reasonable to assume thas the equilibrium concentration.
Egs.(3) and (4)is a system of ODE for the unknown func-
tions ¢ (f), p(z). Note that both equations are derived from
the conservation law.
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Fig. 1. Model and experimental curves.

Thency, = 0 = ¢, = ¢ until hydride ends. Fronf4) it fol-
lows that/ = bc2 L?p~2. When the hydride core disappears,
the left hydrogen desorbs, thug(z) decreases. EqE3) and
(4) may under these assumptions be solved explicitly:

3_2L2 t
Crclti_/ b(f) df,
CB —C JO
ca) =c, t<t;, plts) =0, p(0)=L

,03_ 3

(%)

— _1
%m=EQ+f/bmm), calt) =7 1> 1,
6)

In spite of simplicity of this model (only two parameters:
boandEy}), itgives rather good results with particle size distri-

Now let us consider certain expressions for the density of bution taken into consideration. Fig. 2there are the model

the fluxI(z, co (7). _

The first expression ig(r) = k(t)cg't[l —cy(t)/c]. The
factor in brackets describes the influence @f on the
flux: if ¢ < ¢ then I() = k(r)c§™, but if ¢, ~ ¢ then
I(r) = 0. In Fig. 1 there are the model and the experi-
mental curve (erbiumy = T = 0.05K/s, To = 694K). Pa-
rametersLZ = 10-3cm,bg = 6 x 10 18cnt¥/s, Ep = 1.6 x
10°J, ko = 4.2 x 10 5cm/s, E, = 1.1 x 104, cg“ =8 x
10%em3, ¢'=0.15§™ (equilibrium concentrations if
anda phases). If it is clear that,(r) < ¢, one can simplify
the expression/(r) = k(r)cg™.

The second expression foft, c.(t)) is k(t)[cgrit — co(D)]

[1 — ca(t)/c], i.e. proportional to the difference of concen-

trations. The last factor is discussed a few lines above. Again,

the simplification is possiblei(f) = k(t)[cgrit — c(t)]. This
is interesting: substituting it tq3) we get p = —k(t) =
—k(T(1)): hydride decomposition depends only on temper-
ature.

The third possible way to describe hydride decomposition

is to suppose that hydride decomposition is fast enough to

maintain the equilibrium concentration in the solution. Des-
orption outflow is compensated by hydride decomposition.

curve and the experimental one the same aSign 1 with
traps (see Sectiof) taken into account. Size distribution is
normal, mean radiug =5 x 10~3cm, o = 10-3cm. Pa-
rametersibg = 5 x 10 18cnf/s, £, = 1.6 x 10°J, " =
58x 10%1ecm3,¢c = O.15cg”t, the traps coefficients are con-
stanta; = ap = 10 3s7 L.

Particles in the powder are of different sizes. Some mod-
els provide good fitting of experimental curves even for a
single particle. Otherwise size distribution should be taken
into account. Let the density of particle radii distribution be
N(L). The mean flux density then is calculated Hg) =
Jo~ It LYS(LYN(L)dL(fo~ S(L)N(L)dL)~ L. HereJ(z, L)
is for the desorption flux density from a particle of radius
Numerically it is sufficient to consider 20-50 radii to obtain
rather smooth mean curve.

3. Varying concentration in hydride
Now let us assume that the concentratigr) may change

in time. One more connection between concentrations or
fluxes is necessary.
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One possibility is the local equilibriunag(r) = y(f)ca g X 1015 Desorption flux densities
(). The Stefan condition is derived similarly t¢3): ' ' ' T— Model
(y(1) = Dea(t)p = —1I(t, ca(2), ca(r)). Herel(t, cq, cp) isthe 7r —— Experim p
hydride decomposition flux density. From balance equation sl
(1) with ¢g = cp(r) we obtain ~ .

':/ F

ca((V(0p° + L2~ p%) =4

=30%1(t, ca(r), cp()) — BLZb(1)c5(1) — ¥(D)ca(Dp®  (7) Cy

Another possibility is the expression for the flux density 2
I4(t, co(1), cp()) on the phase boundy(r, ca(t), cp(t)) = 1t
v1(t)ep(?) — y2(t)ca(?). This flux can remove some hydrogen 0 , , ,
from hydride even if it does not decomposef(r) is high 400~ 500 600 700 800 900 1000

“ ” H T, C

enough. “Superfluous” hydrogen atoms come to the solution
and are immediately distributed there evenly. Density of the Fig. 3. Traps taken into account.
hydride decomposition fluxmay be modeled by formulae
from Section2. The Stefan condition iscg(r) — ca(1))p = and probability for a captured atom to be released is pro-

—1(1, ca(r), cp(1))- Considering the balance in hydride we de-  hortional toz(z). The proportionality factorss, a; may de-
rive the equationg (1)p = —314(t, ca(1), cp(1))- Theequation  neng on temperature (in the Arrhenius way). Thus we obtain
for ca (1) is (1/3)ca()(L® — p3(1)) = I(t, ca (1), cp(1)p?(r) + the linear equationz = a1(f)ca () — a2(r)z(¢). Let us show
La(t, ca(t), cp(0)p?(1) — L?b(1)c2(t), ca(0) = c. how the Eqs(3) and (4)change. Other models are modified
similarly. The Stefan conditio(8) with traps taken into ac-
count has the forrrrg”t —co(t) — 2(0)p = —1(t, co(2)). Eq.

4. Influence of traps
P (4) will change to:

Numerical experiments (e.dzig. 1) show that model
curves lie almost always below experimental ones at high . I(t, co (1)) 0%(t) — L?b(1)c2 (1)
temperatures (i.e. in the end of the experiment). This meanscu(t) =3 L3 — p3(1) — a(t)calr)
that after hydride has decomposed and most hydrogen has
desorbed, the left hydrogen desorbs less quickly than models +az(t)z(7) (8)
predict. One of the possible explanations of this factisinter-  In Fig. 3 there is the experimental curve (the
action with the traps. The traps are defects of metal, cavities,same as inFig. 1) and the model curve. Parameters:
admixtures, etc. that can capture hydrogen atoms when their, = 10-3cm, by = 4 x 10-8cmfls, E, = 1.6 x 10°J,
concentration is high and release them when the it becomesiy = 9.2 x 10°cm/s,Ey = 1.2 x 104‘],cgrit =75x 104
aps byc() (e traps are disuibuted evenly). Assume tnat O+ © = 015 a1 = 33 x 1077 By = 47

Z . —

probability for an atom to be captured is proportionatd¢) 103,z = 27 x 107571, E = 0J.
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Fig. 2. Traps and size distribution taken into account.
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