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Modeling high-temperature TDS-spectra peaks of
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Abstract

In the paper we present several mathematical models of dehydrogenation kinetics of metals for the TDS (thermal desorption spectrometry)
method. Diffusion is assumed to be fast. This allows considering only ordinary differential equations.
© 2005 Elsevier B.V. All rights reserved.
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. Introduction

In this paper we discuss some models applied to the
idely used experimental method of thermal desorption
pectrometry (TDS)[1–6] applied to dehydrogenation of
etals. A sample of studied material (e.g. hydride) is placed

nto an evacuated vessel and heated. The desorption flux of
ydrogen from the sample is measured. We are interested

n kinetics of dehydrogenation of metals. We assume that
emperature is rather high so that diffusion is relatively fast.
hen it is possible to make models using ordinary differential
quations.

The material is a powder. We consider a single particle
nd model it as a sphere of radiusL. Real particles of hydride
owders are not spherical; yet the sphere is a good approx-

mation for small particles when diffusion is fast. Inside the
article there is a hydride core (� phase) of radiusρ. A spher-

cal layer of widthL − ρ is metal with dissolved hydrogen
� phase). Usually the heating is linear:T (t) = υt + T0.

Letc�(t, r), c�(t, r) be the concentrations of hydrogen dis-
olved in� and� phases at timet, r is for radius. Since dif-
usion is fast, we can assume thatc�(t, r) = c�(t), c�(t, r) =

c�(t). For some materials one can also assume thatc�(t) =
ccrit

� = const. Otherwisec�(t) ≥ ccrit
� . Hereccrit

� is the criti-
cal concentration in hydride. We model the desorption
density with a square dependence on the concentr
J(t) = b(T )c2

�(t, L) (bulk desorption). The boundary-val
problems of dehydrogenation of metals with surface
orption are considered in[7,8]. We assume also that all p
rameters are Arrhenius temperature dependent, in part
b(t) = b(T (t)) = b0 exp{−Eb/[RT (t)]}.

2. Constant concentration in hydride

Here we consider the case whenc�(t) = ccrit
� . The concen

tration dynamics is driven by two fluxes: the desorption
and the flux of hydrogen decomposition. To avoid singu
ity in the obtained differential equations att = 0 we should
consider a thin ”initial cover”: a layer of metal with dissolv
hydrogen around the hydride core. LetV (r) andS(r) be the
volume and area of a sphere of radiusr. The balance equatio
for decomposing hydride is

c V (ρ(t)) + c (t)(V (L) − V (ρ(t))) + S(L)
∫ t

b(τ)c2(τ) dτ
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Differentiating ont we obtain

(ccrit
� − c�(t))ρ2ρ̇ + ċ�(t)

L3 − ρ3

3
+ L2b(t)c2

�(t) = 0 (2)

Now let us consider the hydrogen balance near the phase
bound. Denote the density of hydrogen flux from the hy-
dride phase byI(t, c�(t)). During the time dt the hydride
core was decreasing. Denote the decrement of its radius
by dρ < 0. At time t the thin spherical layer of width|dρ|
(denote its volume by dV > 0) consisted of hydride and
contained hydrogen with concentrationccrit

� . At time t + dt

this layer contained dissolved hydrogen with concentration
c�(t). The amount (ccrit

� − c�(t)) dV is gone towards the sur-
face by the fluxI because there are no other sinks. Since
dV = 4πρ2|dρ| = −4πρ2 dρ, it follows that

−4πρ2(ccrit
� − c�(t))ρ̇ = 4πρ2I(t, c�(t))

⇒ (ccrit
� − c�(t))ρ̇ = −I(t, c�(t)) (3)

The last equation is a Stefan condition at the moving
bound. The initial data isρ(0) = ρ0 < L. Substituting(3)
in (2), we get:

ċ�(t)(L3 − ρ3(t)) = 3I(t, c�(t))ρ2(t) − 3L2b(t)c2
�(t),
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Fig. 1. Model and experimental curves.

Then ċ� = 0 ⇒ c� ≡ c̄ until hydride ends. From(4) it fol-
lows thatI = bc2

�L2ρ−2. When the hydride core disappears,
the left hydrogen desorbs, thusc�(t) decreases. Eqs.(3) and
(4) may under these assumptions be solved explicitly:

ρ3 = L3 − 3c̄2L2

ccrit
� − c̄

∫ t

0
b(τ) dτ,

c�(t) ≡ c̄, t < ts, ρ(ts) = 0, ρ(0) = L (5)

c�(t) = c̄

(
1 + 3c̄

L

∫ t

ts

b(τ) dτ

)−1

, c�(ts) = c̄, t ≥ ts

(6)

In spite of simplicity of this model (only two parameters:
b0 andEb), it gives rather good results with particle size distri-
bution taken into consideration. InFig. 2there are the model
curve and the experimental one the same as inFig. 1 with
traps (see Section4) taken into account. Size distribution is
normal, mean radius̄L = 5 × 10−3 cm, σ = 10−3 cm. Pa-
rameters:b0 = 5 × 10−18 cm4/s, Eb = 1.6 × 105 J, ccrit

� =
5.8 × 1021 cm−3, c̄ = 0.15ccrit

� , the traps coefficients are con-

stant:a1 = a2 = 10−3 s−1.
Particles in the powder are of different sizes. Some mod-
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�(0) = c̄ (4)

Here c̄ is some initial value for the concentration. It
easonable to assume that ¯c is the equilibrium concentratio
qs.(3) and (4)is a system of ODE for the unknown fun

ions c�(t), ρ(t). Note that both equations are derived fr
he conservation law.

Now let us consider certain expressions for the densi
he fluxI(t, c�(t)).

The first expression isI(t) = k(t)ccrit
� [1 − c�(t)/c̄]. The

actor in brackets describes the influence ofc� on the
ux: if c� � c̄ then I(t) ≈ k(t)ccrit

� , but if c� ≈ c̄ then
(t) ≈ 0. In Fig. 1 there are the model and the exp
ental curve (erbium,υ = Ṫ = 0.05 K/s,T0 = 694K). Pa-

ameters:L = 10−3 cm,b0 = 6 × 10−18 cm4/s,Eb = 1.6 ×
05 J, k0 = 4.2 × 10−5 cm/s,Ek = 1.1 × 104 J, ccrit

� = 8 ×
021 cm−3, c̄ = 0.15ccrit

� (equilibrium concentrations in�
nd� phases). If it is clear thatc�(t) � c̄, one can simplify

he expression:I(t) = k(t)ccrit
� .

The second expression forI(t, c�(t)) is k(t)[ccrit
� − c�(t)]

1 − c�(t)/c̄], i.e. proportional to the difference of conce
rations. The last factor is discussed a few lines above. A
he simplification is possible:I(t) = k(t)[ccrit

� − c�(t)]. This
s interesting: substituting it to(3) we get ρ̇ = −k(t) =
k(T (t)): hydride decomposition depends only on tem
ture.

The third possible way to describe hydride decompos
s to suppose that hydride decomposition is fast enoug

aintain the equilibrium concentration in the solution. D
rption outflow is compensated by hydride decomposi
ls provide good fitting of experimental curves even f
ingle particle. Otherwise size distribution should be ta
nto account. Let the density of particle radii distribution

(L). The mean flux density then is calculated asJ̄(t) =
∞
0 J(t, L)S(L)N(L) dL(

∫ ∞
0 S(L)N(L) dL)−1. HereJ(t, L)

s for the desorption flux density from a particle of radiuL.
umerically it is sufficient to consider 20–50 radii to obt

ather smooth mean curve.

. Varying concentration in hydride

Now let us assume that the concentrationc�(t) may chang
n time. One more connection between concentration
uxes is necessary.
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One possibility is the local equilibriumc�(t) = γ(t)c�

(t). The Stefan condition is derived similarly to(3):
(γ(t) − 1)c�(t)ρ̇ = −I(t, c�(t), c�(t)). HereI(t, c�, c�) is the
hydride decomposition flux density. From balance equation
(1) with c� = c�(t) we obtain

ċ�(t)(γ(t)ρ3 + L3 − ρ3)

= 3ρ2I(t, c�(t), c�(t)) − 3L2b(t)c2
�(t) − γ̇(t)c�(t)ρ3 (7)

Another possibility is the expression for the flux density
Id(t, c�(t), c�(t)) on the phase bound:Id(t, c�(t), c�(t)) =
γ1(t)c�(t) − γ2(t)c�(t). This flux can remove some hydrogen
from hydride even if it does not decompose ifc�(t) is high
enough. “Superfluous” hydrogen atoms come to the solution
and are immediately distributed there evenly. Density of the
hydride decomposition fluxI may be modeled by formulae
from Section2. The Stefan condition is (c�(t) − c�(t))ρ̇ =
−I(t, c�(t), c�(t)). Considering the balance in hydride we de-
rive the equation ˙c�(t)ρ = −3Id(t, c�(t), c�(t)). The equation
for c�(t) is (1/3)ċ�(t)(L3 − ρ3(t)) = I(t, c�(t), c�(t))ρ2(t) +
Id(t, c�(t), c�(t))ρ2(t) − L2b(t)c2

�(t), c�(0) = c̄.

4. Influence of traps
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Fig. 3. Traps taken into account.

and probability for a captured atom to be released is pro-
portional toz(t). The proportionality factorsa1, a2 may de-
pend on temperature (in the Arrhenius way). Thus we obtain
the linear equation: ˙z = a1(t)c�(t) − a2(t)z(t). Let us show
how the Eqs.(3) and (4)change. Other models are modified
similarly. The Stefan condition(3) with traps taken into ac-
count has the form (ccrit

� − c�(t) − z(t))ρ̇ = −I(t, c�(t)). Eq.
(4) will change to:

ċ�(t) = 3
I(t, c�(t))ρ2(t) − L2b(t)c2

�(t)

L3 − ρ3(t)
− a1(t)c�(t)

+a2(t)z(t) (8)

In Fig. 3 there is the experimental curve (the
same as inFig. 1) and the model curve. Parameters:
L = 10−3 cm, b0 = 4 × 10−18 cm4/s, Eb = 1.6 × 105 J,
k0 = 9.2 × 10−5 cm/s,Ek = 1.2 × 104 J,ccrit

� = 7.5 × 1021

cm−3, c̄ = 0.15ccrit
� , a1 = 3.3 × 10−3 s−1,E1 = 4.7 ×

103 J,a2 = 2.7 × 10−3 s−1, E2 = 0 J.
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Numerical experiments (e.g.Fig. 1) show that model
curves lie almost always below experimental ones at h
temperatures (i.e. in the end of the experiment). This me
that after hydride has decomposed and most hydrogen
desorbed, the left hydrogen desorbs less quickly than mo
predict. One of the possible explanations of this fact is int
action with the traps. The traps are defects of metal, cavit
admixtures, etc. that can capture hydrogen atoms when t
concentration is high and release them when the it beco
lower. Denote the concentration of hydrogen captured by
traps byz(t) (the traps are distributed evenly). Assume th
probability for an atom to be captured is proportional toc�(t)

Fig. 2. Traps and size distribution taken into account.
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